A Novel Target-Objected Visual Saliency Detection Model in Optical Satellite Images

نویسندگان

  • Xiaoguang Cui
  • Yanqing Wang
  • Yuan Tian
چکیده

A target-oriented visual saliency detection model for optical satellite images is proposed in this paper. This model simulates the structure of the human vision system and provides a feasible way to integrate top-down and bottom-up mechanism in visual saliency detection. Firstly, low-level visual features are extracted to generate a low-level visual saliency map. After that, an attention shift and selection process is conducted on the low-level saliency map to find the current attention region. Lastly, the original version of hierarchical temporal memory (HTM) model is optimized to calculate the target probability of the attention region. The probability is then fed back to the low-level saliency map in order to obtain the final target-oriented high-level saliency map. The experiment for detecting harbor targets was performed on the real optical satellite images. Experimental results demonstrate that, compared with the purely bottom-up saliency model and the VOCUS top-down saliency model, our model significantly improves the detection accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salient regions detection in satellite images using the combination of MSER local features detector and saliency models

Nowadays, due to quality development of satellite images, automatic target detection on these images has been attracted many researchers' attention. Remote-sensing images follow various geospatial targets; these targets are generally man-made and have a distinctive structure from their surrounding areas. Different methods have been developed for automatic target detection.  In most of these met...

متن کامل

Top-Down Visual Saliency Detection in Optical Satellite Images Based on Local Adaptive Regression Kernel

This paper proposes a novel top-down visual saliency detection method for optical satellite images using local adaptive regression kernels. This method provides a saliency map by measuring the likeness of image patches to a given single template image. The local adaptive regression kernel (LARK) is used as a descriptor to extract feature and compare against analogous feature from the target ima...

متن کامل

A Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image

Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...

متن کامل

Graph-based Visual Saliency Model using Background Color

Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...

متن کامل

Just Noticeable Difference Estimation Using Visual Saliency in Images

Due to some physiological and physical limitations in the brain and the eye, the human visual system (HVS) is unable to perceive some changes in the visual signal whose range is lower than a certain threshold so-called just-noticeable distortion (JND) threshold. Visual attention (VA) provides a mechanism for selection of particular aspects of a visual scene so as to reduce the computational loa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Multimedia

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014